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The artificial neural net development has had some-
thing of a renaissance in the last decade with an
impressive range of application areas. From the
viewpoint of telecommunication networks and sys-
tems, an increasing number of studies can be observed
in recent literature dealing with proposed applications
of neural nets in telecommunication environments,
such as connection admission control in broadband
networks, the control of high-speed inter-connection
networks, channel allocation in cellular mobile sys-
tems, adaptive routing, etc. These proposed appli-
cations largely use three main neural net classes:
feed-forward nets with backpropagation learning,
Hopfield feedback nets, and self-organising neural
nets. In this paper, we first give an overview of
neural net classes and their main properties, and then
present a review of applications in telecommunication
systems, where attention is devoted to numerical
aspects such as the convergence property and learning
speed of the proposed neural nets.

Keywords: Hopfield; Backpropagation; Self-organ-
ising feature maps; Routing; Switching fabric;
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1. Introduction

Applications of artificial neural nets are en vogue.
Their ability to generalize and optimize more
quickly than some conventional algorithms has been
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observed in different areas of research such as
speech recognition, financial forecasting, image
data compression and noise reduction in signal
processing. Neural nets take advantage of the
redundancy incorporated in their distributed pro-
cessing structures. Moreover, their ability to form
some kind of internal representation of the supplied
input vectors makes them very useful for recognising
and distinguishing complex patterns.

In general, a neural net performs a functional
approximation, whose accuracy only depends on
the way in which the internal representation is built
up. This affects the use of different transfer functions
of the artificial neurons employed, different net
structures or learning paradigms. Each application,
whose subject can be formulated as a pattern
recognition, pattern completion or pattern distinc-
tion problem, can use neural nets. In some areas,
neural nets promise to be more efficient than
conventional algorithms, especially in signal pro-
cessing and speech recognition. In contrast, it is
astounding that only a few publications deal with
the use of neural nets in distributed computer
systems.

In recent years, an increasing.number of studies
have used artificial neural nets in telecommunication
systems, computer networks and data transmission
technologies. For example, potential application
fields are network planning, connection admission
control, optimal path finding, tuning of wide area
network parameters, error recognition and intruder
detection, network reliability improvement, traffic
estimation, congestion control, coding, etc.

In this paper, an overview of potential uses of
neural nets in problems arising in telecommunication
systems and networks will be given. We have two
main purposes: first, to discuss proposed major
neural net structures, and second, to describe the
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applications and, in particular, those steps from the
problem statement and its mapping to a neural net,
and its parameterization as well as numerical
evaluation.

In a number of papers dealing with neural net
applications in communication systems, numerical
aspects are not often treated carefully. In some
studies, it turns out that the proposed neural net
can only be applied for a rather restricted set of
parameters; in others, the convergence issues of
the neural nets are not taken into account. Thus,
we will focus on the numerical tractability of the
application and the performance of the neural net
compared with conventional solutions, where the
parameterization problem will be discussed.

In the sections to follow we will concentrate on
the application of neural nets in a number of
specific applications, i.e. routing, admission control,
switching and mobile communications. Applications
in the following areas will not be described in detail
in this paper: coding theory [1-6], data transmission
[7-10] and signal processing related to telecommuni-
cations [11-17]. We first introduce some basic neural
network structures, i.e. Hopfield nets, feedforward
nets with backpropagation learning, and self organis-
ing feature maps. These are neural net structures
which can be found in those applications described
in section 3 of this paper.

2. Basic Neural Net Structures

2.1. Neuron Model

In the literature, some basic neural net structures
are often used in proposed applications in telecom-
munication systems and networks: the classes of
(i) feedback-oriented Hopfield nets, (ii) feed-
forward nets with backpropagation learning, and
(iii) self-organising feature maps.

In general, the neuron model is the basic pro-
cessing element of an artificial neural net. According
to the commonly used model, a neuron performs a
nonlinear mapping of a set of inputs x; into an
output v;. The output v; is computed as a weighted
sum of inputs according to a transfer function, e.g.
the sigmoidal function such as:

1 .
v = — Wwith x;= 2 Wi Vi . 1)
1+ex i
Other forms of the transfer function are:
v; =sign(x;) or v;=tanh(x)) . 2)

The term w;; stands for the weight of the connection

12

wn

from neuron i to neuron j. Furthermore, for
numerical reasons, a bias is often added to each x;.
The models of neurons described in the Eq. (1)
and Eq. (2) are used for the two classes (i) and (ii)
of the neural nets discussed here, while class (iii)
uses vectors rather than neuron models as basic
processing elements.

2.2. Hopfield Nets

Hopfield nets [18,19] form a well-known network
structure class which is often proposed for use as a
content-addressable memory or as an optimizer,
e.g. in scheduling problems like the Travelling
Salesman Problem.

A Hopfield net is an unlayered, fully connected
net, the basic structure of which is shown in
Fig. 1. The neurons are described in the previous
subsection. In the following, we will consider
neurons with a sigmoidal transfer function. The
strength of the connections from a neuron i to a
neuron j is described by the component w;; of the
weight matrix W. According to the working principle
of the neuron model described above, the input
signals to neuron j are summed and then transformed
by the transfer function. As depicted in Fig. 1, the
total input to neuron j is

x;= D owvit . 3)
i#j
The external input signal u; adjusts the level of
excitability of the network. This external bias is
normally set to a constant value for all neurons.
In the following mathematical treatment of Hop-

Fig. 1. Basic structure of a Hopfield net.
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field nets, we will take the continuous-time version
which leads to a set of differential equations. First,
the equation indicating the time evolution of the
net seen by a given neuron j is

djz_—_xlq_zwijv,-%uj, T=RC 4)
ds T i=1

0

vi=g(x) , g(xi)=%<l + tanh C—)) (5)

The value 7 determines the contribution of the
values of x; from time step ¢ — 1 to time step ¢.
The variable x, in Eq. (5) modifies the slope of the
hyperbolic tangent curve of the transfer function.
Usually, the state of the Hopfield net can be
described by means of an energy function such as

18 X S
E=—-= 2 Vv; z WiV — 2 Vild; . (6)
254 i=1

For the system of N neurons it guarantees that the
system will settle down in a stable state, even
though the solutions might not be the appropriate
ones. Starting the net with initial random values of
x; and given weights w;, the net should converge
to a stable state. During the iteration, the system’s
energy is minimised due to the negative sign of the
energy function (Eq. (6)). Therefore, evaluating the
final state of a Hopfield net corresponds to finding
a minimum of this energy function, which may only
be a local one.

To prove convergence of the Hopfield neural net
in the continuous case, a system of N nonlinear
differential equations (Eq. (2)) has to be solved.
Since in the normal case no closed form of the
solutions can be found, Hopfield takes advantage
of the Liapunov function, which guarantees an
asymptotic behaviour of the solutions to the differen-
tial equations [18,20]. It should be noted that there
exists no mathematical prescription to construct a
Ljapunov function, although the theory of differen-
tial equations supplies some preconditions that a
Ljapunov function has to meet. (Interested readers
are referred to the literature for a detailed descrip-
tion [20].) The Ljapunov function for the system
of N neurons (Eq. (6)) is given by

1y N
E=— Z Vi 2, WiV,
25 j=1
JFi
N Vi N
+ z l/R,-f gty dv+ D, v, . @)
i=1 0 i=1

If Wis symmetric, Eq. (7) guarantees the asymptotic
convergence of Eq. (2). It should be noted that the
state space in which the network is operating can
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be represented by an N-dimensional unit hypercube.
The valid solutions of the neural network with
values of 0 or 1 at each neuron are equivalent to
the corners of that hypercube.

Basically, two main application of Hopfield nets
can be observed: as content-addressable or associat-

" ive memory, and as an optimiser in scheduling

problems.

Content-addressable memory or associative memory
In this case, the patterns to be stored are presented
to the neural net according to a learning rule. In
the original version this rule is simply a scalar
product sum of patterns viewed as vectors. The
patterns can be thought of as stored in the weight
matrix. In terms of an energy function, each pattern
will be represented by a local minimum in the
energy state space. In the recall phase, the net has
the capability to recognize the patterns which can
be superimposed with some noise. The usage of
Hopfield nets will cope with some numerical prob-
lems if the patterns to be stored are correlated.
This phenomenon leads to some modifications of
the learning rule, for example, as proposed in [21].

Optimizer

In this case the scheduling is mapped into an
energy function. The terms of this energy function
correspond to the constraints of the scheduling
problem to be solved. Based on this artificial energy
function, the weight matrix, and thus the structure
of the Hopfield net, can be obtained. The scheduling
problem’s solution is located in the global minimum
of the energy function. This application of Hopfield
nets is often proposed to solve problems in communi-
cation systems, as far as the problem can be
formulated as a scheduling problem. Hopfield nets
as a scheduler cope with serious numerical problems,
e.g. determination of the Lagrange parameters
contained in the constructed energy function. This
is discussed later in more detail.

2.3. Backpropagation Nets

In the following, we use the term ‘backpropagation
net’ as a shorthand notation of ‘feed-forward neural
net with error back-propagation’. The basic structure
of a backpropagation net is depicted in Fig. 2,
where a three-layer net is chosen as an example.
The neural net consists of a number of neurons
connected by weight vectors W,. As shown in Fig. 2,
it contains an input layer, one (or more) hidden
layer(s), and an output layer, connected in a
fully meshed, feed-forward manner. There are two
operation modes: learning and recall.
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Hidden Output

Weight Matrices

Fig. 2. Basic structure of a backpropagation net.

1. During the learning phase, a number of, for
example, K pairs of input/output vectors {Pj,
O«), k = 1, .., K, are presented to the net. It
computes its own output vector according to the
equations mentioned above, and compares the
computed output vector with the presented input
vector. The comparison results in an error vector,
which will be used to change the weight matrices
according to a learning rule. A steepest descent
gradient method is chosen as the learning pro-
cedure in the majority of papers describing
applications of backpropagation nets. However,
this method is not the most efficient when
compared to other known numerical methods
such as those discussed in [22]. The learning
phase will end if all input/output pairs to be
learned have been presented, and the total error
is lower than a predefined threshold. After
completion of the learning phase, the information
about the input/output pairs, which represents a
mapping, can be seen as being stored in the
weight matrices.

2. In the recall mode, the backpropagation net can
be used as an error-correcting classificator, where
the response Q, is expected from the net when
an input vector of type P, + R is presented to
the net. Thereby, R represents a noise component
added to the input vector.

2.4. Self-organising Feature Maps

In contrast to the two neural net structures described
in the two previous subsections, the class of self-
organising feature maps employs multi-dimensional
vectors as neurons, which are again the basic
processing elements of the net. ’

Basically, a self-organising neural net mapping
approximates a continuous topological mapping
é: VCR"—> A CR™, which is implicitly defined.
The term V represents an n-dimensional subspace
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of R”, and the term A an m-dimensional subspace
of R™, the so-called target space. The structure of
the net is shown in Fig. 3.

The basic principle of the self-organising algorithm
stems from competitive learning, which has been
investigated by Kohonen and Grossberg [23]. The
idea of the algorithm will be briefly described in
the following. A sequence of statistical samples of
a vectorial observable v = v(f) € R" (¢ is the time
coordinate) is presented to the net. In a previous
step the weights interconnecting the N input neurons
with the M neurons in the two-dimensional mapping
array have already been set to small uniformly
distributed random numbers. Most important in this
context is the definition of a suitable environment,
i.e. neighbourhood function, which is shrinking
in the course of time. At the beginning the
neighbourhood function, N(f) covers half of the
net array and reduces its size accordingly during
progression of the self-organising process.

The self-organising process can be characterised
by the following steps:

1. Presentation of a new input vector v(t).

2. Computation of the distance d; between all
input neurons and all mapping array neurons j
according to the following formula:

d;= ; (vir) = wy ())? (8)

with v,(f) as the i-th component of the N-
dimensional input vector and w;;(f) as the connec-
tion weight between input neuron i and mapping
array neuron j at time ¢ corresponding to the
Euclidean metric.

3. Selection of the mapping array neuron j* with
minimal distance d;*.

4. Update of all weights, restricted to the actual
topological neighbourhood N;*(f) according to

structure

<. representation/

output array
®

--------- weights

incoming stimuli

B input vector

Fig. 3. Basic structure of a sclf-organising feature map.
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for j € N*(f) and 1 < i < N. Here nm(y)
represents a monotonically decreasing function
of the environment.

5. Iteration of the above steps until a predetermined
error criterion is reached.

Due to the shrinking of the neighbourhood area
during the self-organising process (which can be
mathematically treated as a Markov process [24]),
and since the adaptation of weights only takes place
in the neighbourhood of the best-matching neuron,
this process can be interpreted as a Voronoi
tesselation of the input space (see [23] for further
details.) A further result is that the point density
function of the vector centroids approximates the
probability density function (pdf) of the input
vectors, and so provides a topological ordering both
temporally and spatially.

Extensions of the algorithm concerning variances
in input dimensions [25], approximation of disconti-
nuities in the underlying probability density function
[26] and adaptation to non-arbitrary topologies by
dynamically defined neighbourhoods along minimal
spanning trees (MST) [25] can be found in numerous
recent studies.

3. Applications in Telecommunication
Systems and Networks

In this section we discuss in more detail some
applications and proposals for the use of neural
nets in telecommunication environments. In particu-
lar, we take the following examples:

1. Feedback-oriented neural nets, Hopfield nets:

® routing in communication networks

® scheduling in high-speed interconnection net-
works

® channel allocation in mobile communication
systems.

2. Feedforward neural nets, backpropagation nets:

® connection admission control in broadband
networks
® routing in communication networks.

3. Self-organising neural nets:
® satellite scheduling.

We also devote attention to numerical aspects,
which play an important role in discussions about
the applicability of neural nets in a particular
problem.
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3.1. Routing in Communication Networks

3.1.1. Problem statement. We consider a com-
munication network consisting of a number of nodes
connected via communication links. The main aim
in designing routing schemes is to find the most

_ appropriate path from an originating node A to a

terminating node B while taking into account a
number of constraints. Let us call this path the
optimal path. From a user viewpoint, the optimal
path should guarantee a certain level or grade of
service (GoS) parameters, which can be a delay or
blocking probability threshold, and the optimal
path should be cost-effective. From the network
viewpoint, the optimal path should not touch
network areas actually under overload, and thus
prevent a magnification of the overload state,
should use transmission links efficiently, and should
minimise switching overhead involved. All of these
factors are often expressed in the form of a cost
function, e.g. a link as depicted in Fig. 4. The
cost function may contain factors concerning, for
example, transmission or transfer delays, or the use
of transmission and switching functions. An example
is given later in this subsection.

There exist various routing strategies, depending
on implementation aspects as well as the need
to include existing networks. From the network
management and control points of view, three types
of routing strategy can be distinguished: centralised,
distributed and isolated routing. Depending on the
ability of a routing strategy to react to dynamic
traffic changes in the network or network topology,
a classification into fixed, alternate and adaptive
routing schemes can be made. Existing routing
algorithms are often static in nature, using routing
tables [27] as decision help. The estimated traffic
is used to fix one or two paths through the network
for each origination-destination pair of nodes. These
paths are stored in the routing table, and are kept
constant until the next change of network topology.

0

Fig. 4. A network example.
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Neural nets to be used as routing schedulers in
communication networks can be found in a number
of studies [28-32], where the Hopfield type of
neural nets is employed. In the next subsection we
present this class of neural net router in more
detail; later we discuss work using other net types,
e.g. neural net application for adaptive routing in
survivable communication networks [33] and for
dynamic routing [34], both implementing the back-
propagation neural net type.

3.1.2. Hopfield net in routing. As described above,
the routing problem can be formulated as a schedul-
ing problem. Thus, the Hopfield type of neural nets
used as a scheduler appears as a possible solution.
In [28] a neural net was first applied to the routing
problem in communication networks.

In Fig. 4 an example of a network which is
subject of routing is depicted. The network consists
of N nodes. From node i to node j a cost factor w;
is shown. Assuming that the cost between two
nodes is independent of the transfer direction, a
symmetric N X N cost matrix W with entries w;; is
obtained. Positions in the matrix with a non-existing
link are set to large values symbolising the cost of
infinity. The cost function is indicated in [28] as
the expected delay across a link between two nodes,
and depends on the link capacity c; and the actual
traffic condition f;. The link cost w; can then be
determined by defining w;; as a function of c, e.g.
w;; = fo + (f;j/c;;)*, where fo denotes the transmission
time on the link.

In turn, the cost-effective path through the
network can be described by a N X N permutation
matrix, where the rows represent the nodes of the
network and the columns the position of the node
in the path. By this method only those paths with
a maximum number of N nodes can be represented
(cf. Table 1). When we allow a node to appear many
times on the path, the resulting path representation
matrix is not a permutation matrix, but the obtained
path length can be shorter. In this case, the cost
factor from a node to itself is set to zero (cf. [29]).

Table 1. Path represented by a permu-
tation matrix.

1 2 3 4 5

WD A W N =
OO OO
S O = OO
[N eNel =
O = O OO
-0 O O O
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Note that as a result, there are only zero-entries
on the main diagonal. Then the following conditions
can be derived from the description of the permu-
tation matrix:

1. There are exactly N entries with value 1:

(10)

(11)

A neural net of the Hopfield type with N? neurons
organised in a matrix-form is now employed. Each
neuron in this matrix represents the position of
a node in the path evaluated. Furthermore, in
consideration of the conditions above, including a
third term depending on the cost matrix W, the
Hopfield energy function can be reformulated:
N N N-1

E E E Wivie(Vike1 + Vik-1)
PR
Weighting of costs
BN 1 N N
E 2 2 Z VijVik
k=2 i=1j=1
J7F

Column restriction

cld X 2
+S(2 3 v-N)
i=1j=1
(12)
Exactly N entries equal to 1 .
The quadratic terms of Eq. (12) define the
connection (weight) matrix 7, and the linear terms

of the external bias u. Replacing T and u in Eq. (5)
leads to

N
dy_ X, 3
T m=1

Wim(Vm,/+1 + Vm,j—l)

dr
N N N 2
B D V- C(Z > Vim — N)(13)
m=1 i=1 m=1
m&i

Table 2. The resulting cost-matrix.

1 2 3 4 5

O N O N
8 8 A~ o
8 00 = O
N 8 O = &
N O 8 8
o 8 8




130

Given a source-destination pair A-B, A will take
the first and B the last column. At initialisation of
the numerical procedure, the values of the first
and last column in the neuron matrix are preset
accordingly, to 1 for the source and the destination
nodes. The other columns are initialised with
random values, taking into account that the sum
over all matrix elements is N. Within each iteration
of the Hopfield net, a system of N differential
equations (Eq. (13)) has to be evaluated; this step
is then repeated until convergence. It should be
noted here that the effort for solving the optimisation
problem rises with N2.

A number of questions arise with the use of a
Hopfield net to solve routing problems in particular,
and scheduling problems in general. First, there
exists the problem of finding a common parameter
set for the Hopfield net, which can be used for a
large variety of communication network topologies
under different traffic conditions. Second, the stab-
ility of the solutions found by the Hopfield net
must be confirmed in a mathematical sense rather
than just through simulations. Furthermore, we
observed that the use of appropriate numerical
techniques depends on the properties of the differen-
tial equations to be solved. This is discussed later
in more detail.

It was shown by Rauch and Winarske [28] and
Zhang and Thomopoulos [29] that good results can
be achieved using the Hopfield net, but only under
the condition that the optimisation parameters A,
B and C used as Lagrange parameters in Eq. (12)
are determined after numerous simulations. There
is no proof that these parameters work as well with
nets of a higher dimensionality or a distinct topology.
In [29], all simulations were carried out for a 5-
and a 9-node-network with a constant cost-matrix
and predetermined Lagrange parameters. This indi-
cates that there were problems concerning the
general use of these parameters. It was noticed that
the algorithm is sensitive to these parameters, since
a bad operating point may result in divergence or
oscillation. A general applicability of the Hopfield
net for routing problems thus depends on the answer
to this crucial question. These problems are also
expected to be applicable to simulations such as
those presented in a subsequent paper [35] showing
results for a 16-node network using the same
parameters as for the 9-node network. In [31] and
[32] it was shown that the tendency of the net
solutions to oscillate depends on the stiff character
of the underlying differential equations. In particu-
lar, the step length of the Euler method used cannot
be adapted correctly to this class of stiff differential
equations.
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In general, Hopfield nets often cope with stiff
differential equations, but are dependent on the
Lagrange parameters and the number of neurons.
As a consequence, strange effects may occur, also
noticed in [29] and [35]. The exact result of an
analytic solution and the numerical results diverge
by a large degree. Mathematically, it is extremely

" difficult to forecast the appearance of stiff behaviour,

therefore it is recommended that more appropriate
methods are used (cf. [36]).

In [31] it was pointed out that, based on simulation
results, no common parameter sets for nets of the
same topology, nor for nets of a distinct topology,
exist. The stiff behaviour of the differential equations
was shown to be independent of the step length,
therefore the classical Hopfield net, even with
Lagrange parameter adaptation, cannot generally
be applied in a practical sense. Unfortunately, there
exist valid parameter sets to solve a given routing
problem, but it becomes intractable to test a
sufficiently large number of sets, until the right one
is found. Even the modification of the Hopfield net
by simulating annealing led to acceptable results
only within a small range of network dimensions.
Suppose that the parameters are optimised for a
given network size, the neural net applied to a
network of different size will probably not be able
to find valid solutions when the same parameters
are used. Referring to an intrinsic analysis of the
eigenvalues of the connection (weight) matrix of
the Hopfield TSP net (as discussed in Aiyer et al.
[37]), an implementation of this method to solve
routing problems was reported in [31] and [32].
Regarding the connection matrix of the Hopfield
net, Aiyer et al. show that there exist relationships
between the eigenvectors of the connection matrix
and the space of solutions. More precisely, the
corresponding eigenvectors to the eigenvalues of
the connection matrix span a subspace of possible
solutions. From a geometric view of this subspace,
analytic expressions can be derived to determine
the Lagrange parameters’ independence of the
dimension of the nets.

The connection matrix 7 of Eq. (12) can be found,
for example, by means of partial differentiation, as
follows:

Tjmn = = AWin(Bp 1 + B j-1)
- Baj,n(l - 8i,m) -C, (14)

with §,; = 1if i = j and O otherwise, and w,,, as
the cost between nodes i and m. The terms with
parameter B and C are responsible for ensuring
that the net achieves valid solutions. The term with
the parameter A restricts the solutions to paths
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with a minimal length, therefore the eigenvalues
are determined only from the B and C terms. Thus,
the eigenvalues of T are

A, = —B(N —1) — CN?

Confines the solutions to the subspace with exact
N neurons having values 1.

)\Z:B

Moves the solution towards the edges of the N-
dimensional hypercube.

As = —B(N - 2)

Confines the solution to the valid subspace.
Using these eigenvalues, the parameters B and C
can be determined and the corrected connection
matrix T is

Tij,kl = _AWik(Sl,jﬂ_ 81,,'--1) - Blaiksjl

BN + B,
e 1)

Here B, denotes a new parameter, which determines
the relative strength of A\; and As.

Let us now discuss some mathematical properties
concerning the eigenvalues. The recognition of the
importance of the eigenvalues leads to a further
aspect. From a mathematical viewpoint, the stability
of the set of differential equations cannot be
guaranteed with respect to the stability theorem by
Ljapunov, as illustrated in [20]. For the arbitrarily
chosen parameter B the symmetric connection
matrix 7 is not positive definite, which is the necessary
condition for stability. The positive definite property
implies that all eigenvalues of T have values greater
than 0. The eigenvalues \;, X,, N3 of T never have
the same sign, choosing B negative or positive.
Therefore, the sufficient condition cannot be satis-
fied for all different kinds of stability, as indicated
in [20].

A modified differential equation set has been
used to test the eigenvalue model with networks of
size 10, 15 and 20 nodes. Results for the network
with 20 nodes (Fig. 5) are shown in Table 3 [31].
It can be seen that two of the source-destination
pairs (rows 4, 5) show wrong solutions. Looking at
the wrong solutions one can observe an important
behaviour of the Hopfield net. The net tries tc find
the best solution in the sense of a global optimization.
Therefore, nodes in the communication network
with the largest degree in a graph-theoretical sense
are favoured, because those links add the least cost
to the energy function in each iteration, thus
minimising the energy of the net in a stronger way.
As the influence of those nodes increases, the larger
the networks become.

Fig. 5. Network example with 20 nodes.

Table 3. Results for a network with 20 nodes. A = 1,7
B =8,0B1 =7,7C = 0,34,

Path Iterations Result Valuation

1 1-20 1256 1-6-11-16-20 optimal
2 1-17 1543 1-6-10-14-13-17 optimal
3 1-2 1246 1-6-11-6-1-2 optimal
4. 48 1058 4-6-7-8 wrong

5. 418 1314 4-6-10-14-18 wrong

6 6-18 1374 6-10-14-18 optimal
7 9-15 1650  9-13-14-10-6-10-14-15 optimal
8. 17-18 1008 17-13-14-10-6-10-14-18 optimal

A further interesting modification of the Hopfield
net was recently introduced [30], where the energy
function has been constructed differently to [29].
The authors focus on the optimum bifurcated quasi-
static routing problem, with the goal of minimizing
the network-wide average time delay. The approach
outlined there reflects the fact that in practice the
link cost in a communication network is usually
time varying, depending on the amount of traffic
flow the links carry. Consequently, this approach
is more appropriate to the optimal routing problem
[38].

The neural net is similarly constructed to that
used in [29], where the following modification took
place. First, the fact is taken into account that a
link between some nodes, say x and i, may not
exist. Thus, an additional term is included in
the energy function, containing information as to
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whether the specified link exists or not. The new
term p; has the value 1 if the link between node i
and j exists, otherwise it is 0. The neural net
consists of n - (n — 1) neurons, one neuron for a
communication node in the possible path, except
those on the diagonal. The output of a neuron v;;
is assumed to be 1 if the arc from node i is in the
shortest path, and O otherwise. Like the energy
function in [29], this function has to be minimized
and the lowest energy state is equivalent to the
shortest path. Distinct from [29], Ali and Kamoun
[30] construct an energy function consisting of five
terms, which are mostly linear after linearization of
Eq. (16):
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Here the indices d and s denote destination and
source locations. The A-term minimises the total
cost of a path, taking into account the cost of
existing links. The B-term excludes non-existing
links. The C-term ensures that if a node has been
entered, it will also be exited by a path, thus it is
guaranteed that there will be at most only one ‘1’-
neuron at each row and at each column. The D-
term forces the neurons to converge to one of the
corners of the hypercube defined by the states of
the neurons. The E-term is zero if the output of
the neuron at location (d, s) has the value 1.

Considering the dynamics of a neuron at location
(i, j) according to the Hopfield dynamics in Eq. (5)
and substituting the energy function above into
Eq. (5), the connection matrix can be obtained
after a comparison of corresponding coefficients.
This leads to the following connection strength T}; 4,
between the neuron at location (i, j) and the neuron
at location (k, [).

Tij,kl = Dsiijl - CS]I + CB[[ + Cﬁjk . (17)

The external input u; is given by

A
Uj=— 2 wil(l = 8,4 - &)

B D E
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The advantage of the proposed scheme for connec-
tion matrix and externally supplied input is its
flexibility, due to the fact that the link costs w;; and
the network topology information is mapped in to the
biases rather than into the neural interconnections.
Therefore, changes in topology can be expressed in

- terms of external inputs. This Hopfield net, however,

underlies the same restrictions concerning the Lag-
range parameters, as explained above.

Another approach to the routing problem by
neural nets of Hopfield type can be found in [39],
which is focused on routing in multihop radio
networks. A decentralized structure for packet radio
networks (PRNs) with local broadcast properties is
considered. The use of frequency hopping techniques
or spread spectrum as in code division multiple
access (CDMA) leads to a scheduling-routing prob-
lem, which is indeed NP-complete. The topology
of a PRN can be described by a graph G = (N, L)
with network nodes N and connection links L.
Under the assumptions of a conflict-free channel
access, the assignment of noise-free, periodical time-
slots to unique stations, and further, the restriction
to one receiver or sender, respectively, for each
station and a distance between stations, which
excludes interference of the same channel used, the
routing problem can be formulated as described
below.

Given a set of N,, source-destination (SD) pairs
and a set of paths connecting each SD pair, select
a single path between each SD pair so that network
congestion is minimised. The formulation of the
routing problem as an optimisation problem allows
us to use a Hopfield net. Each path of an SD pair
is represented by a neuron, with a subscript (if)
indicating the j-th path of the i-th SD pair. The
values of the neurons v; are in the range between
0 and 1. Most important is the definition of the
energy function, which can be expressed by the
following terms:

2 Tij.kl Vij Vi
k=1 j

X
- DRI (19)

where N,, denotes the number of SD pairs, N,(i)
the number of paths of SD pair i, v; the output
value of neuron ij, T, the connection strength
between neuron ij and k/, and u; the external input.

It has been shown [40] that for the case of
continuous traffic and for a certain class of network
topologies, the selection of paths that minimise the
maximum node degree (defined by the sum of all

incoming and outgoing flows of the node) in the
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network permits the establishment of schedules with
a minimal length. As this performance measure
cannot be transformed into a Liapunov energy
function, Wieselthier et al. [39] proposed the follow-
ing congestion measure:

Nsa Nsa N, (k)

z Z Z IPIJ n Pkl|vxjvk1

xlk 1 I=1
ki

with P, the j-th path of SD pair i and |P; N Pyl
the number of nodes located both in paths P; and
Py, Including the following constraints that (i) no
more than one path per SD pair is to be activated
or selected, (ii) a total of exactly N,, paths in the
net is to be activated, and (iii) exactly one path per
SD-pair is to be activated, the Lagrange multipliers
method can be used to yield the final form

Nsd P
Eioa = bEb+ExE Z Z

(20)

1)

with the coefficients b, \;, I > 0 and E; for each
constraint from above. The third constraint is
redundant, but helps to achieve convergence.

The connection weight Tj 4 is the sum of all
coefficients in E,. that multiply the product v;vy,
in the equation for E,.., and is then given by the
following expression:

Ty = — bIPy () Pil(1 — 84)

- )\laik(l_sjl)_)\f—)‘_’:aik . (22)

Similarly, the coefficients of the linear terms corre-
spond to bias values, and so u; is the sum of all
coefficients that multiply v;.

In the first simulations with constant coefficients
\ and with 24 nodes in the network, the quality of
the solutions was not satisfactory, and determination
of the adequate coefficients appeared to be rather
heuristic. Therefore, the authors modified the energy
equation by introducing variable coefficients A,.
Within each iteration, all \,;’s were increased accord-
ing to

N(n + 1) = N(n) + (ADLE(n) (23)

with At as the Lagrange multiplier step width.
The simulations performed with the modified
Lagrange method yielded reasonable results for
both 24- and 100-node networks, giving 100% valid
convergences, even better than those achieved by

an additional simulation with MFA (mean field

annealing) and constant coefficients. The simulations
were performed from 50 different initial states of
the network, and also used a modification with
multiple Lagrange multipliers which, nevertheless,
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did not achieve significant improvements. Addition-
ally, the authors tested other metrics, and reported
solutions for non-uniform traffic and alternate
routing, i.e. splitting the traffic over two or more
routes. They concluded the interesting report by
introducing a new model, which is an alternate
formulation of the congestion-minimisation problem
in which neurons are defined for each link along
every path, rather than one for each total path,
leading to a link-neuron model [39].

3.1.3. Routing with feedforward nets. Although
backpropagation nets are mainly used for pattern
recognition problems, there are some studies [33,
34] dealing with the application of this class of
neural nets to routing problems.

A distributed approach for routing is considered
in [35], where several small controllers share the
routing function. This implies that there is no need
to control the network-wide system state; each
controller only needs information on its local
neighbourhood. The design also supplies redundancy
to the controller in order to cope with local
malfunctions. A feedforward net is used in conjunc-
tion with the Hebbian learning principle.

Using an ordinary feedforward neural net for
each node in the communication network, consisting
of one input node for each possible destination site
in the input layer and an output node for each
neighbour of the site where the neural net is located,
training of this net occurs each time a packet is
received at a site. The controller asserts a 1 to the
corresponding input node, the packet originated
from, and O for all other neurons. The corresponding
output node is assigned the time, the packet
required, to reach this node from its origin. This
so-called backward learning [27] can be interpreted
as Hebbian learning, using mutually orthogonal
input patterns for all different destinations. The net
solution considers by that kind of learning only the
total time in transit to the destination. For reasons of
comparability, the simulations performed included
four routing paradigms: random routing, hot potato
routing [27], static routing, and neural-based Hebb-
ian routing. The special coding of the input patterns
make it seem reasonable that the neural net solution
approximates the performance of static routing after
a certain tuning phase.

The second article concerns the relationship
between decision making in team theory and neural
nets for dynamic routing in communication networks
[34,41]. The authors say that there are two main
reasons why using neural nets can become advan-
tageous. The first is that due to the necessary delays
throughout the whole network, it may be impossible
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for a unique decision centre to gather and forecast
all information. That is important for characterising
the network status and, furthermore, to send reliable
routing decisions to the nodes. They intend to
construct an informationally decentralised decision
structure, in which the routing nodes operate as
‘the cooperating decision makers of a team’. Here
it is meant that each node takes information out of
its local neighbourhood, i.e. the contents of queues
at the node and, additionally, some messages from
neighbouring nodes. The second issue, addressed
in this paper, is the place where the routing
strategies are computed. It is assumed that the
availability of a distributed algorithm, enabling the
nodes to adapt to local routing strategies, constitutes
an attractive property.

The authors formulate the dynamic routing prob-
lem as a team optimisation problem, more especially
as an approximation of the original team problem
stated in terms of functional optimisation to a
parametric one. This is accomplished by assigning
each routing node a set of multi-layer feed-forward
neural nets capable of providing the network with
routing decisions. The synaptic weights are then
adjusted by the well-known back propagation algor-
ithm.

The authors regard the communication network
traffic flow, and consider the content of the local
queues at node i at time ¢ with the continuous state
variable x(f). A new state x,(t + 1) consists of the
amount of traffic held in the queues of node i plus
the incoming traffic from nodes ‘upstream’, along
with a term r,(f) which has not been defined in the
publication (it could represent the traffic originating
from node 7). The aim is the minimisation of the
weighted traffic delay, i.e. the cost

T-2
W= Z Z ax(t+ 1) + 2 o, x(T)  (24)
=0 ;eN ieN
with «;, o, 7 as positive constants. The cost W is
assumed to be the sum over all states of all network
nodes in discrete time steps. This includes that in
the time interval 1...7, cost appears as the number
of packets which are queued and propagated through
the whole network. The description of the cost
function and the network dynamics leave some
questions open. The meaning of the term ry(z) is
unknown, for instance. Additionally, it should be
mentioned that if blocking occurs, the necessary
propagation time for a packet to travel from an
origination node to a destination node can exceed
the considered time interval.
The neural net solution shall now shortly be
described. The total number of neural netsis N * T.
Each neural net consists of L layers, and in the
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generic layer s, n, neural units are active. In the
following, a multivector w is constructed whose
components are given by all the weight and bias
coefficients of the neural net of node i at time ¢.

The goal is now to determine the vector w* which
minimises the expected cost W. The following
mathematical description is exactly that, known
from the usual back-propagation algebra. The modi-
fication here lies in the construction of an adequate
multivector, which consists of all weights of all
neural nets in the communication system. The
gradient descent procedure is then performed in
the usual way.

WAL= Wk = T Wk (0%,
k = 0»17"‘ . (25)

The updating algorithm is subdivided into two parts:
a forward pass, where at iteration step k the routing
nodes distribute the contents of their queues by
means of their local routing strategies; and a
backward pass, where the distributed computation
is executed throughout the whole communication
network for all states x*, with the neural nets acting
as nodes of an network-wide ‘overall’ neural net
connection structure. Each neural net contributes
to the global minimization of W with its local
gradient components. The authors report successful
simulations of their implemented neural net structure
under simplified conditions. Without doubt, it is
worth mentioning that the network exhibits a high
degree of adaptivity, based on the mathematical
foundation of the algorithm. On the other hand,
questions concerning real-time use of this approach
can only be answered if hardware implementations
not only of the neural nets but also of incorporated
improvements of minimization techniques exist.

3.2. Broadband Network Admission Control

In high-speed broadband networks such as ATM-
oriented systems (Asynchronous Transfer Mode)
systems [42], the function of connection admission
control (CAC) plays an important role in the
resource and network management context. It
should help to maximise the system throughput
while maintaining the desired quality of service
(QoS). The design of CAC is more complex in
high-speed systems due to the complexity of bit-
rate streams offered by a diversity in traffic sources.

The use of neural nets for admission control was
first described in Hiramatsu [43,44], where a back-
propagation net has been used. Morris [50] discussed
more general aspects concerning the performance
of neural net applications. In [51] a stochastic
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approximation in conjunction with a back-propa-
gation net has been proposed for network congestion
control mechanisms. In [52] different neural net
structures for CAC are presented, and a basic
architecture is investigated to show the control
performance of neural nets in comparisons with
conventional CAC mechanisms.

In this subsection we will take the example given
in [52] to discuss the use of neural nets in broadband
network admission control. According to the CCITT
(cf. [42]), the connection admission control function
(CAC) is defined as follows: ‘CAC is the set of
actions taken by the network at the call set-up
phase (or during the call re-negotiation phase) in
order to establish whether a (virtual channel or
virtual path) connection can be accepted or rejected’.
We will first illustrate the major problems for CAC
arising in modern communication systems. Multi-
service networks cope with traffic of different
connection types, according to different services
offered. Upon acceptance of a connection of type
i, this connection will be active during a connection
holding period. In this period a connection generates
a bit-rate process characterised by means of a few
parameters, e.g. the mean bit rate m; and the peak
bit rate h;. In ATM systems the bit-rate process is
packetised in fixed-size units called cells. By
accepting a connection the network has a contract
with the user: the user agrees to keep the negotiated
traffic characteristics during the connection duration,
and the network gives a promised quality of service.
The CAC has to accept a new connection in such
a way that all connections before and after the
admission decision of the new connection are treated
according to the negotiated quality of service (QoS).
In the context discussed here, the quality of service
will be the cell blocking probability Bcgyy.

We now assume a number of M different connec-
tion types to be served by the network. The system
state seen by the network is X = {n;,n,, ..., np},
where n; denotes the number of active connections

bit rate of sources
total bit rate of
multiplexed traffic
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Fig. 6. Source traffic and multiplexed traffic.

135

of type i being in the system. From a mathematical
viewpoint, the main CAC function can be seen as
a functional mapping of the system state X to a
decision vector Z such as Z = {zq,2z5, ..., Zp},
where z; = 1 stands for the acceptance decision of
a connection establishment request of type i, and
z; = 0 for the rejection case. The CAC is thus
reduced to the implementation of a mapping

feac: X— Z = feac(X) (26)

according to the predefined quality of service of
the network. The functional mapping fcac can
further be simplified using the state description X*
= {ny,ny, ..., n; + 1, ..., ny}, i.e. the system state
just after accepting the connection request of type
i. The decision vector is accordingly reduced to

0 connection i should
be accepted

Zzr={z}= 1 connection i should @
be rejected
and the CAC mapping to
fac: X* = Z* = fEnc(X*) . (28)

This functional mapping separates the M-dimen-
sional state space into two regions: the accept region
and the reject region. Thus the CAC problem can
be formulated as a pattern recognition problem:
upon recognition of the load pattern X, a yes/no
decision has to be made to accept/reject the
connection request. This property leads logically
the use of a neural net for connection control
purposes in ATM systems.

In most of papers on neural nets for CAC, the
feed-forward class of neural nets with the back-
propagation learning algorithm is proposed. The
general structure is illustrated in Fig. 7. This basic
structure was first proposed in [43], and further
developed in [44] to the neural net structure depicted

user CAC MUX network

- O

' neural
1 network

traffic parameters

Fig. 7. Neural net for admission control.
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in Fig. 8. The neural net is designed to perform
the functional mapping given in Eq. (26), i.e. the
CAC based on network state. With the M different
classes of connections, each with different known
characteristics, the pairs of input/output patterns to
be learned by the neural net are computed as
indicated in Fig. 8. Starting with a state vector X
= {ny,n,, .., npy} as the input part of a pattern, the
multiplexed bit rate function is determined. Having
this bit-rate function as traffic stream, the cell
blocking probability can, for example, be estimated
giving the actual quality of service. Upon a compari-
son of this measure with the target QoS, the
acceptance decision Z is made. This can be inter-
preted as the decision to be made to accept/reject
a connection request of type i if the actual system
state is {n,n,, .., n;, .., np}. The working mode of
the neural net during the recall phase is as shown
in Fig. 8, where the net will answer with an
accept/reject decision Z* for a connection request
of type i when the input vector X = {n,n,, ..., n;
+ 1, ..., np} is presented.

After the learning phase, the neural net performs
the CAC by separating the M-dimensional input
state space into two regions corresponding to a
(M - 1)-dimensional decision surface. The decision
surface, which separates the ‘accept’ region from
the ‘reject’ region in the state space, is stored in the
weight vectors of the neural net. The performance of
the neural net as admission controller (cf. [52]) is
illustrated below using the example of an ATM
multiplexer and corresponding connection types
specified as follows: the output of the multiplexer
has a capacity of 600 Mbps, and the buffer space
is 0.5 Mb. We take the following types of connection
into account:

cell stream blocking
simulation behaviour
N acceptance
ny > decision
n2 >
backpropagation
N3 learning

a) Learning phase

ny -
call
request np+1 —> accept/reject
of type 2

ng —>

b) Recall phase

Fig. 8. Working modes of a neural net based admission
controller.
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1. Type 1: on/off, mean m = 10 Mbps, peak h =
40 Mbps, ¢, = 1.73.

2. Type 2: binomial, mean m = 5 Mbps, peak h =
40 Mbps, ¢, = 0.42.

3. Type 3: binomial, mean m = 5 Mbps, peak h =
80 Mbps, ¢, = 0.19, where ¢, denotes the
coefficient of variation of the bit-rate process.

On connection traffic level, the arrival process of
connection requests is assumed to be Poisson. The
connection duration is assumed to be negative-
exponentially distributed with a mean of 20s. To
compare the performance of the neural net (NN),
we take a few CAC methods proposed in the
literature: the peak reservation (PR) method, the
equivalent bandwidth (EB) method and the weighted
variance (WV) method. Figure 9 shows the decision
surface of the considered connection admission
control methods, which separates the accept and
reject regions. The accept region lies on the left
hand side of the decision surface. The EB and WV
methods have almost the same decision line, which
again indicates the similarity of their performance.
The NN decision surface is very different. It can
be seen that the NN algorithm accepts many more
sources with a small mean bit rate (type 2) and
fewer sources with a high mean bit rate (type 1)
than the EB and WV methods. Furthermore, the
NN algorithm is more sensitive with respect to
the variability of the bit rate process. From the
communication network point of view, this results
in the same multiplexer utilisation, whereas from
the user’s viewpoint, the differences for user groups
using connection type 1 or 2 are significant.

For the purposes of comparison, it is also
important to know how the CAC mechanism
reacts upon temporary overload situations, i.e. the
overload control performance of the CAC methods.

max number of type 2 sources

40

number of type 1 sources

Fig. 9. Decision surface for CAC.
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As shown in Fig. 10, a rectangular load pulse is
used as the overload pattern, and the time-depen-
dent CAC reaction in terms of cell and connection
blocking probabilities is observed. Clearly, a better
CAC mechanism should survive the overload phase
with a smaller connection blocking probability while
keeping the cell loss rate on the same level as under
normal load conditions.

A comparison of the non-stationary connection
blocking probabilities of connection type 3 is shown
in Fig. 10 for the four CAC methods. In this case,
it can be seen that the overload performance of the
neural net solution is the most efficient. In most
load scenarios under consideration, the CAC per-
formance of the neural net structure investigated is
comparable with, and in some cases better than,
the CAC methods mentioned above, even using a
very small and simple neural net. To improve the
performance of CAC by neural nets, other neural
net structures or other input representations can be
developed. One promising candidate is a combined
solution of an adaptive neural net, the net having
learning patterns which contain more information
about the past of the observable load situation.

3.3. Scheduling in Interconnection Networks

The implementation of future high-speed telecom-
munication networks requires powerful high-
capacity switch structures or interconnection net-
works. Due to the recommendation for ATM to be
used in B-ISDN (broadband integrated services
digital network), data or information will be par-
titioned into packets or cells (in ATM) and trans-
mitted over the network. This leads to the develop-
ment of a number of switch structures which handle
cells, slots or minipackets as information units.
The most common operation mode of appropriate
switches is the synchronous mode, i.e. the time axis
is slotted and the cells are transmitted from the

load

conn. reject prob.

time in sec

Fig. 10. Comparison of overload performances.
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input to the output lines within one time slot.
Important packet switching types under discussion
in modern cell-based switching systems are mainly
crossbar and banyan switches. Both types require
a switch controller to select the cells for transmission
within the next time slot, taking into account certain
conditions and constraints such as minimising the
delay or maximising the throughput of the switch.

The idea for the application of a Hopfield net to
scheduling in crossbar switches was first presented
by Marrakchi and Troudet in 1989 [53]. They
implemented the Hopfield net with a two term
energy function in hardware, and showed that the
VLSI implementation is able to solve the scheduling
task within the given time boundary. Ali and
Nguyen [54] took up this proposal and added a
third term to the energy function to improve the
convergence of the Hopfield net. Brown [55]
presented an application of ‘winner takes all’ circuits
to multistage crossbar switches. In Brown and Liu
[56], banyan switches are investigated, where winner
takes all circuits were applied to avoid internal
blocking.

In general, the switch task can be formulated as
a scheduling problem. The aim is to maximise
throughput while taking into account fairness cri-
teria. Furthermore, in switching systems operating
in high-speed environments, the time interval left
to run the scheduling task is very short. It must be
done during one cell duration; for a 140 Mbps
network and a standardised cell size of 53 bytes,
the cell duration is about 3 us. With such a short
interval in which to perform the scheduling task,
suboptimal solutions can be of great interest.

The studies for crossbar switches and banyan
switches are first presented. Consider a crossbar
switch with N input and N output lines. The switch
is assumed to queue the cells at the input; each
input maintains one queue for each output (see
Fig. 11). Furthermore, the switch operates in the
full-duplex mode, i.e. within one time slot only one

1 2 N

Il

11 —>:ED\
IN—’::[D/

N —__TIN,
NN — T

Fig. 11. Crossbar interconnection network.
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cell can be transmitted on a particular link in each
direction.

A time slot is now observed. All pending trans-
mission requests for this slot can simply be mapped
onto a binary matrix R = (r;)nxn, Which will be
referred to as the request matrix, whereby r; = 1

indicates that there is at least one cell in queue j

at input { waiting for transmission. During this slot,
cells will be transmittted according to a schedule
matrix S, which has to be determined by the switch
scheduler. As mentioned above, this has to be done
within a slot duration, which is quite short in high-
speed systems. To maximise the throughput of the
switch within one slot, the schedule matrix S must
be chosen in such a way that the overlap with the
request matrix is maximised. Due to the full duplex
transmission mode at most one entry s; =1 is
allowed within each row and each column.

For the switch scheduler, a hardware implemen-
tation of a Hopfield neural net is presented in [53].
This net maintains one neuron for each crosspoint
of the crossbar switch, and the neurons are only
connected by rows and columns via inhibitory
connections. The following energy function (without
bias term) is assumed:

=435 3 v

k+#j

Nlbd

N

N-
-._.

(29)

The first (second) term reaches its global minimum
if at most one neuron is turned on within each row
(column). The connection strength from one neuron
to another within the same row (column) is denoted
by A (B). As the authors pointed out, the results
obtained for several 8 X 8 request matrices are
optimal for more than 98% of the cases. In all
other cases, the Hopfield net achieved a stable final
state, but the solutions correspond to non-optimal
schedule matrices. The authors of the original
publication warranted the omission of a bias term
in the energy function by the results obtained.

Note that the energy function also reaches the
global minimum in the case of all neuron outputs
being zero. Therefore, in [54] the following bias
term is added to the energy function given in
Eq. (29):

C|N XN
+_<2 2 Vij
2\& A

This additional term forces the schedule matrices
to be permutation matrices, corresponding to final
stable states with N neurons activated. Since the
number of cells that can be transmitted without
blocking may be lower than N, the schedule matrices

N)z . (30)
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do not always have to be permutation matrices. A
function to compute this number is presented in
[57], but it does not work accurately. Moreover,
the scheduling task can be considered as a matching
problem appearing in graph theory, and there are
efficient methods to solve this class of problems

. (see, for example, [58]).

The connection strengths are determined by
means of a partial differentiation of the energy
function. Another method not taken into consider-
ation in this paper is presented in [59]. The authors
of [54] simulated the calculation of the switching
matrices for 200 input request matrices. During the
simulation the throughput was observed, but the
portion of the optimal solutions is not reported in
detail. Ali et al. explored the same neural net
controller for switch sizes of 4, 8 and 16, as
published in [60]. The throughput of the switch and
the mean delay of a packet have been observed. It
was shown that the throughput yielded by the neural
net controller was closer to an analytically estimated
upper bound than the corresponding lower one.

As presented in [61], the switching fabric using
the neural net controller was simulated under
realistic input traffic assumptions. This study com-
pares the performance of the Hopfield net switching
with such fabrics using the round-robin strategy and
the Hungarian algorithm, well-known from graph
theory. As major performance measures of the
interconnection network, the following metrics are
considered:

® the access delay D, defined as the time passing
from the packet’s arrival until the first apper-
taining cell is transmitted, and

® the transmission time T, the time interval from
arrival until the packet is completely transmitted.

The simulation results for a simple 8 X 8 switch
can be summarised as follows. The neural net
controller yielded optimal throughput for more than
97% of the input request matrices. The remaining
switching matrices were not optimal, although the
stable states of the Hopfield net always represented
global minima of the energy function. This fact is
a consequence of the choice of the starting neuron
activities. The network always enters the equilibrium
state being the local minimum closest to the starting
point. This minimum does not always have to be
an optimal solution. For that reason, the mean
delay and mean transmission times of the neural net
controller are usually longer than the corresponding
times achieved by the matching algorithm which
yields maximal throughput at each time slot. The
neural net performance is practically comparable to
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the round-robin scheme, and is superior for higher
variations of the incoming traffic.

In [61], scheduling fairness issues are also
addressed. The highest throughput does not always
correspond to a fair schedule. While optimising
only the switch throughput, an individual cell could
possibly be forced to wait a very long time until it
is transmitted. The resulting delay and transmission
time of the affiliated packet can be very high. From
this viewpoint the round-robin schedule seems to
offer an a priori fairness. It does not use the whole
switch capacity within each time slot, but each
{input, output}-pair is selected for transmission at
least once every 2N slots.

Simulating the Hopfield network requires solving
the coupled set of ordinary differential equations
givenin Sect. 2.2. The most commonly used methods
for this task are explicit one-step methods. Since
the eigenvalues of the weight matrices are usually
very distinct, the set of ode’s is referred to as stiff,
as already stated in Sect. 3.1.2. In spite of the
fact that explicit methods are not appropriate for
integrating stiff differential equations, the results
obtained are very reasonable.

The advantage of crossbar switches is that they
are internally nonblocking. Blocking may only occur
at the inputs or outputs. The disadvantage is the
second order increase in the number of crosspoints,
which is very expensive. Therefore, larger switches
are built up from smaller crossbars. For example,
suppose that the switch consists of three stages:
inlet, centre and outlet. Thereby, the inlet and
outlet stages are built up from rn X n-crossbars and
the centre stage maintains nr X r-crossbar switches.
Thus, the number of inputs and outputs is given by
N = r - n. The switches of one stage are connected
to those in the next stage with only a single path.
Figure 12 shows such a multi-stage switch for r =
4 and n = 2. The actual state of such a multistage

Inlet Center Outlet
Stage Stage Stage

4/ \4

Fig. 12. Three-stage switch.
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switch can be described formally by introducing so-
called Paul-matrices, as presented in [55]. Each row
(column) of such an r X r-matrix P represents a
particular inlet (outlet) stage. If a request from
inlet stage i is routed to the outlet stage j through
the centre stage k, then the matrix entry p;; is added
the label k. To avoid blocking, the label & is allowed
to appear only once within each row and each
column, such that each call from an inlet switch is
routed through a different centre stage switch to its
destination switch. Because a particular centre
stage switch can route at most r different calls
simultaneously, each entry of the matrix P contains
at most r different labels.

Now, the three-dimensional grid structure of the
used Hopfield net is obvious. For each element of
the matrix, n neurons are maintained with discrete
outputs —1 and 1. If there is a neuron with v, = 1,
then a call from inlet i is routed to the outlet j by
crossing the centre stage k. The equilibrium states
of the neural network have to meet the following
constraints: (i) each label appears only once in each
row and each column, and (ii) the number of
neurons must not be greater than the number of
labels for each matrix entry p;;.

Since the multi-stage switch considered is explored
for circuit switching communications, the neural
network opeérates as follows. Suppose there is a set
of nonBiacking calls at an arbitrarily chosen instant.
When a newly arriving call cannot be routed through
the switch without blocking, the neural network
tries to compute a rearrangement of all calls such
that the blocking situation is dissolved.

To ensure the convergence of the network to
valid solutions, some additional control neurons
were added to the original model. It is doubtful
whether this extension enforces the neural net to
work accurately, because the determination of the
connection strengths is fully omitted. This fact is
astonishing, since in applying Hopfield networks to
optimisation problems, the crucial step is to design
a suitable energy function, and then to determine
the connection strengths accurately. In the following
we present a neural network application to crossbar
switches built up from one-sided crosspoint chips,
as proposed in [62]. The considered switch providing
full-duplex paths maintains N input ports and M
internal busses, and is constructed of an r X c-
matrix of n X m-chips. Notice that N = r - n and
M = c - m. Such a switch is depicted in Fig. 13 for
r=c=2,n=4and m = 2. A connection between
a source and a destination port will be established
if any unused internal bus is found to be intersecting
with the source and destination port and the
crosspoints at the intersection are closed. If the two
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Fig. 13. One-sided crosspoint switch.

crosspoints establishing a connection are on the
same chip, no internal bus driver needs to be
activated. If the switch operates in a batch mode,
the neural net controller selects as many connections
as possible, considering the constraints explained
later. Using the incremental mode, connections are
attempted to be set up at the arrival instants.

The suggested neural net controller has the
following architecture. A single neuron is provided
for each of the crosspoints, whereby the arrangement
of the neurons corresponds to the matrix of cross-
points. The neurons are enumerated from (1,1) to
(N,M). A control neuron is added for each row
and each column. Setting up a connection between
ports i and j implies that there is a column k with
exactly two neurons (i,k) and (j,k) having an output
of 1. Within the rows i and j, these are the only
ones that are on. Suppose that port i is idle, then
the output of the row control neuron (7,0) is set to
1, keeping all other neurons off within this row;
otherwise, the output is set to 0. The column control
neurons should enforce that within each column of
the neuron matrix either none or exactly two
neurons occur with an output of 1. Further, the
neural network is augmented by one neuron for
each of the chips, to control the number of active
bus drivers on the chip.

The neuron updating formula describing the time-
dependent behaviour of the neurons is presented
in the study mentioned!. Unfortunately, the para-
meters determining the connection strengths are
once again omitted. This neural net has been tested
for 100 different request matrices using the following
partially linear transfer function: f(x) = 0 for x <
0,f(x) =xif0<x=<1,and f(x) = 1if x > 1. It
reportedly fails to converge for several request
matrices, especially for larger switches. Moreover,

! For details, see the original literature about Hopfield neural
nets concerning this topic.
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from the statistical point of view, the number of
tests seems to be very small for a sufficient
performance evaluation. Another application of
neural networks to a banyan network for packet
switching is suggested in [56]. This banyan network
has N input and N output ports, and consists
of log, N stages, each assembled of internally
nonblocking 2 X 2 switching elements. Figure 14
shows such a switch for N = 8. The inputs are
connected to the first stage of switching elements
through a perfect shuffle, since this is well known
to increase the performance of a banyan switch due
to the avoidance of cell collisions. Banyan switches
are self-routing from source to destination, i.e. at
stage k a particular cell is sent on the upper outlet,
if the k-th bit of the destination address is zero,
and vice versa. Using this method, every cell arrives
at its correct destination. A blocking situation occurs
if more than one cell attempts to make use of a
particular link.

The links of the perfect shuffle are denoted as
the link stage 0, the links between stages k and
k + 1 are denoted as link stage k, and the output
links of the switch as link stage n + 1. Af is defined
as the set of all {source, destination}-pairs that
attempt to use link j of link stage k. Therefore, a
set of cells is nonblocking if, within all stages, the
sets A¥ contain at most one {s,d}-pair. Since the
stable states of a winner takes all network contains
exactly one active neuron, such a network is
provided for each of the sets A to select a single
{s,d}-pair from it for transmission. Note that output
and input blocking can only be avoided by adding
queues. The banyan switch considered is supposed
to provide input queueing with N queues per input
port. Given an input request matrix (such as that
known from above), to maximise the throughput
of the switch first requires the solving of the
corresponding matching problem, as reported above
and originally presented in [53]. The determination
of the connection’s strengths, as well as their

N/

N\

Banyan  Exchange

Perfect
Shuffle

Fig. 14. A banyan switch structure.
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estimation, is, once again, not reported in this
paper. Moreover, there is no information as to
whether the network always produces valid solutions
or not. Nevertheless, results obtained for several
switch sizes up to 32 are presented. The average
queue size was observed, and was compared to that
achieved for a Batcher-banyan nonblocking switch?.
Furthermore, distribution of the number of cells in
a queue was also recorded to determine the loss
probability of cells for a given buffer size.

Finally, we refer to a further application to
banyan networks [64]. The algorithm presented
there primary initialises a feasible set of conflict-
free paths to avoid internal blocking. Then it
iteratively tries to augment the number of paths by
exchanging neuron outputs. An energy function is
defined for the considered problem, but during
computation of the best path assignment no neuron
updating is applied, such as that known from Eq. (4).
Moreover, no connecting weights are estimated, and
the neurons are just simple binary variables, so it
has to be emphasized that the algorithm presented
is not a neural network. Nevertheless, the authors
report that the results achieved are better than
results achieved by applying another heuristical
method.

3.4. Channel Allocation in Mobile
Communication Systems

In a number of recent studies [45-47] the use of
neural nets in mobile communications, e.g. the
adaptive assignment of demanded radio channels
to mobile subscribers in a cellular mobile radio
system, has been addressed.

3.4.1. Problem statement. A cellular mobile radio
system is considered, based on a number of cells,
each covering a certain geographical region. In
Fig. 15 an idealised cellular structure with hexagons

Fig. 15. A cellular mobile radio system with interference area.

2 For the definition of a Batcher-banyan switch see, for example,

(1.
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is depicted, though in reality it may have a totally
irregular form. In each cell a number of channels
is assigned according to the traffic intensity, and
other factors. The concept of channel reuse is
employed, i.e. if a channel is used in a cell, say
cell 1 in Fig. 15, it cannot be used simultaneously
in an area, e.g. in the adjacent cells 2 to 7, but it
can be used outside the shaded area. Physically,
the border of the cells represents the border of the
region, where the signal-to-noise ratio (SNR) or
the SINAD (signal, noise and distortion) ratio
doesn’t fall below a threshold underneath which no
acceptable radio reception is possible. The traffic
intensity in a cellular system is further modulated
according to a handover function which is caused
by customers moving from one cell to another. If
a mobile unit leaves the covered region of BS(i) to
BS(j), an adjacent cell, the call or connection being
served has to be handed over under the condition
that the neighbouring cell has a channel frequency
left, which of course must be different to those
frequencies used in the originating cell. The same
problem arises if a call arrives from outer cells,
perhaps with a certain number of hops between the
originating cell and destination cell. The problem
of assigning channels to cells is basically a scheduling
problem. A limited number of channels has to be
assigned to a finite number of cells following
constraints such as avoiding the use of the same
channel in a reuse area and two adjacent channels
in a cell. The schedule can be of a static or dynamic
nature. Due to the actual traffic intensity, which is
again time-dependent, a static assignment is not
efficient. Conventional algorithms try to take this
changing channel demand into account by using
splitting techniques of cells at certain times, or by
borrowing channels either from neighbouring cells
or from an overall available pool of free channels.
On the other hand, there is the need to exploit the
available spectrum optimally, and so the concept
of free channels is critical. The time-dependency of
a scheduling algorithm for channel assignment would
be the most attractive property, if the probability
density function of the traffic in cellular systems is
known. Further, due to the mobility of the users,
the algorithms should be fast enough to react to
real-time traffic changes.

3.4.2. Static channel assignment with Hopfield
nets. In [46] and [45] solutions of the channel
assignment problem using neural nets of Hopfield
type are proposed. In Kunz [45], two main con-
straints have been considered, which are to be
mapped on an appropriate Liapunov energy func-
tion:
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1. Service of the expected traffic must be
accomplished. This concerns the availability of
r(j) radio channels at BS(j).

2. The service quality must be sufficiently high.
This affects the interference restrictions, the co-
channel interference of a channel, which is used
by BS and the adjacent-channel interference.
This means that the frequencies for different
channels used at the same BS should have a
certain predefined channel separation.

A Hopfield net with n - m neurons for n base
stations and m channels is used. The neurons are
arranged in a matrix form. The output of the neuron
(i) has the value 1 if the channel i is used in BS(j).
In the same row, negative couplings (inhibitory
connections) of the neurons exist, indicating the
avoidance of co-channel interference. In the same
column, there are also inhibitory connections, stand-
ing for the prevention of adjacent-channel inter-
ference. Together with other constraints, the energy
function is given as follows (from [46]):
n n

=13 5% S (-
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Here r(j) denotes the number of radio channels at
base station j. The first term of the energy function
favours states which affect the interference con-
straints. The minimal allowable channel separation
between stations j and j’ is denoted by c;-. The
second term is responsible for the channel demand
for each base station. The third term concerns states
with minimal use of assigned channels, and the last
term couples the (/,/) neurons with the neuron
representing channel /, and reaches a minimum if
! = i. The connection matrix and the external input
obtained from this energy function is thus

Tyop=—A > (1-3
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In the study mentioned, simulations results were
carried out for real data from the Helsinki region.
Furthermore, a fuzzy-logic-based program -called
GRAND has been involved. The data concerning
topographical and morphographical structure were
used to define traffic density; after the placement

80c)61,i'+c - stj'
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of 25 base stations inhomogeneously over the region,
the radio frequency field strength distribution was
calculated. Thus the interference matrix (c;) and
the function r(j) were given as input for the neural
net, which consisted of 25%121 neurons. This number
depends on the maximal degree of the expanded

- interference graph, which was 121. The results of

the simulations given in [45] (and in the former
study [46] seem to promise a good performance
(73 channels are required to solve the channel
assignment problem, and the neural network
achieved 78 channels). However, the parameters
are left to be interpreted, since it is not completely
clear which parameters of the Hopfield net were
used, and how they are adapted for other parameter
sets.

3.4.3. Dynamic channel assignment using feed-for-
ward neural nets. The use of a feed-forward net
in cellular mobile systems for the dynamic channel
assignment problem (DCA), as explained above, is
presented in [47]. As discussed, DCA should
make optimal use of the available spectrum, and
implements time-dependent adaptation to the traific
situation. The use of conventional graph-theoretic
methods is extremely time-consuming, therefore the
application of a neural nets promises to be an
alternative. An idealisation of a DCA algorithm,
called the maximum packing (MP) strategy, was
recently proposed and analysed by Everitt et al.
[48]. This strategy assumes that the minimum
number of channels required in the system at a
certain time is equal to the actual number of channels
in use. The simplest practical implementation of
the MP strategy to a cellular system is to use an
ordered channel search with no rearrangement.

The neural net used by the authors is of the feed-
forward type with back propagation. It was trained
off-line, using solutions obtained from an ordered
channel search technique. The net is subdivided
into two parts, one net for the inner cell and one
for the six outer neighbouring cells. The inner cell
net contains 42 input neurons, six hidden neurons
and three output neurons. The outer cell net differs
only by the number of 24 input neurons. The
training data consists of the usage of the available
channels of a requested cell and that of its neigh-
bours. For outer cells, the training data comprises
its own channel usage and that of the three closest
neighbours for each cell. In Fig. 16, the basic
structure of the system is shown.

The traffic load in a cell was measured by the
average number of new calls which arrived in that
cell over a certain interval. The performance of the
DCA-algorithms using ordered search and neural
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Fig. 16. Structural diagram of the neural network approach.

nets was assessed by measuring the call blocking
probability, which showed a good approximation of
the ordered channel search by the neural net.

3.5. Applications of Self-organising Feature
Maps

Applications of self-organising feature maps to solve
problems in telecommunication systems are quite
restricted in number. As a Kohonen net provides
a topological approximation of the distribution of
the input vectors, this type of neural net would
be appropriate for the representation of traffic
distribution in space and time. Tasks such as traffic
management are therefore potential candidates to
be processed or controlled by a self-organising
feature map. The purpose of traffic management is
to best meet the traffic communication requirements
of the users under the constraint of fixed network
capacity. Consequently, the communication network
has to be monitored and analysed constantly to
reconfigure the network performance facilities for
prompt reaction to traffic changes.

In [49] and [65] an application was presented
describing a modified version of the Kohonen
algorithm for the management of a digital satellite
communications network using the TDMA access
technique. TDMA (Time Division Multiple Access)
is a multi-access technique often used in satellite
communications. Several earth stations are allowed
to share the capacity of a satellite by allocating
time slots to the earth stations. The station capacity
is thus defined by the number of channels which are
assigned to it. The TDMA satellite communications
network has a meshed topology, allowing station-
to-station direct communication. The sum over all
capacities of all links connecting the stations with
each other is the total fixed network capacity. The
load and demand to a network thus define the
network state, which is quantified by the number
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of channels allocated to each link. The capacity of
each link should vary according the changing traffic
demands. The assignment of channels to links in a
network topology is referred to as a map.

The problem to be dealt with using a neural net
can be posed as the channel assignment task in
TDMA satellite communication networks involving
a pattern recognition and generation problem. The
fluctuation of the network state constitutes a time-
varying vectorial pattern, which has in turn to be
assigned to a predetermined reference pattern. This
pattern represents an existing mapping, which was
achieved by human experience or statistical analysis.
The actual network state pattern can be obtained
using the Common Signalling Channel, e.g. the
similarity of the actual pattern to a reference pattern
can be proved by means of some distance metric
(e.g. the Euclidean metric). Depending upon how
close the pattern is matched to each of the reference
patterns, one of the following three steps can be
taken:

1. Using the original map if the distance between
input pattern and reference map is very small.

2. Generating an intermediate map which deviates
gradually from the original pattern and corre-
sponds to another reference pattern.

3. Generating and using a new reference pattern,
replacing one of the existing reference patterns
if the distance is very large.

These three stages depend on the comparison of
incoming network state vectors with reference
vectors, and so implement the LVQ (learning vector
quantization) described in [23]. The generation of
new reference maps reflects the variation of traffic
flow in time, and therefore a decision method is
needed to decide whether a new map should be
generated to replace the current reference map. In
[65], the following formula is used:

L
d(r)= >, |di(r)] with j=12,..,N
i=1

and i=12, ..., L, (33)

where d;(f) = v(t) — Cy(?), L is the total number
of links in a network, and Cy(f) is the total number
of channels assigned to link i of the j-th reference
map at time ¢. After normalisation it is possible to
determine which reference map best meets the
network requirements. This is clearly the one with
the smallest normalised distance. The modification
of the reference map to achieve an intermediate
map is governed by the following equation:

Ci(t + 1) = Ci(n) + B(n(/)di(1) (34)
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with B(n(j)) as a gain factor depending on the
number n(j) of occurrences of reference map j. The
convergence factor E(j) = max/|B(n(j))d;l, i = 1,2,
... L, becomes smaller if the j-th map is selected
more often, indicating that the modified map j
meets the network requirements better than the
other maps. A new map is then created based on
the following conditions:

T
E<r=Cyt+1)= EC,’,(I)

with B = ZL; C(¢) as the total number of channels
assigned to the modified map j, r as a threshold
set, and T as the capacity of the entire network. If
a decreasing function B(n(j)) is chosen, E can be
forced to be smaller than r, and so the condition
for the generation of a new map is fulfilled in
dependence of the number of selections of a
reference map.

In [65] the algorithm introduced in [49] has
been extended in such a way that a second-
level management was appended, including a state-
dependent routing scheme, which tries to route
each call in those directions where the blocking
probability of future calls is low.

The results in the studies cited showed that self-
organising algorithms are appropriate in cases where
the traffic in several links is highly variating in
time slot transitions. The state-dependent routing
algorithms essentially reduce the blocking rate, if
the traffic intensity is not too high. The best method
was the combination of the two algorithms, where
the traffic throughput closely approached the arrival
traffic rate.

4. Concluding Remarks

The artificial neural net development has faced a
renaissance in the last decade, with a large number
of application areas. From the viewpoint of telecom-
munication networks and systems, an increasing
number of studies can be observed in the recent
literature dealing with proposed applications of
neural nets in telecommunication environments,
such as connection admission control in broadband
networks, the control of high-speed interconnection
networks, channel allocation in cellular mobile
systems, adaptive routing, etc.

These applications mainly use three neural net
types: feed-forward nets with back-propagation
learning, Hopfield feedback nets, and self-organising
neural nets. In this paper, we first give an overview
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of neural net classes and their main properties, and
then give a review of applications in telecommuni-
cation systems, where attention is devoted to
numerical aspects such as the convergence property
and learning speed of the proposed neural nets.

It should be noted that, with a few exceptions,

- the applications discussed here are all in proposal

or preliminary phases. To become practicable, issues
concerning structural design and dimensioning of
the neural nets under consideration must be better
understood.

In this early phase of neural net development,
the list of applications mentioned in this paper is
by no means complete. The theory of neural nets
is in fact still in an early phase. With better
understanding of processes going on in such mass-
ively parallel structures, together with the develop-
ment of new net architectures and numerical conver-
gence properties which will allow us to dimension
such neural nets properly, more and more efficient
applications are still to come.
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